Student Ramuel Mendoza Raagas for Teaching Fellow Ron Newburgh, Ph.D.

Physics E-1b
Electromagnetism
Pre-Lab for Experiment #5:
Wave Optics
Spring Term 2003
Submitted April 24, 2003
  1. I. Hypotheses:

    The wave and particle properties of light form a continuum (although they each pursue quite different ends), which is why we can target at first particle and then later wave material for foci of study recycling some of the exact same material objects (i.e., the pinhole camera). In the previous home-experiment, the pin-hole camera was an apparatus for noting ray rather than wave proprerties as we had focused on the images we get out of transferring the position of a pencil ourselves. Even a newly-sharpened pencil (even when one drawn out of an industrial grade electrical machine sharpener) has a "lead" (compositionally carbon as network-planar graphite soft solid) end which is quite blunt when compared to the cellular "threads" that are floaters The true colour of a good deal of the blood cells which may up floaters is red, but we will not see here streaks as red as eye veins the likes of which we are aware in stressed individuals (i.e., Kenyan champs to Boston's annual marathon).

    Whereas ray optics got us all concerned with inversion and reflection, wave optics will get us into the pheonena of diffreaction and wavelength-discriminative dispersion.

    Light is a traveller. Its speed can't be quartered. It can be slowed, but even diamond which offers the best defense against its champion speed capabilities, cannot make light's speed anything less than outstanding. Indeed, when diamond slows light's travelling, the struggle of it all (gem-quality diamond wrestling to keep entering light caged within its own sharp confines) only brings out the best in light's dazzling quality. Moisannite may outdo the brilliance characterized of diamond, but light cannot be outdone in its omnivincent speed.

    That said, qt, although different from qincident across two different media,

    Cannot make light so slow.

    Light is a special wave, and yet it is a wave, so some properties will be observing right here (i.e., Huygens on wavefronts) apply not just to light, but even to other waves. ).

    Can a ruler which carries orders of magnitude of measures only as low as a milliter dare be used to be measure the 10-7meter magintude of wavelengths of light (which each never get longer than several hundred of nanometers), which is a millionth of the millimeter's size? Yes it can! One of the grand gifts of optics is that it often prompts for magni-fication, thus producing magni-tudea that prove useful to us human observers.

    The ruler's non-reflective markers (usually black painted mini-grooves) will serve zs diffraction slits.

  2. II. Procedure
      Apparati:
      1. shiny metallic ruler
      2. oscilloscope with 10x probe
    • ruler
        compact disc
      1. pin-hole camera
    Procedure reactivate the previous experiment (#4's)'s pinhole camera. You will not need new film. Open up a compact disc case with disk still stuck contained in it. Don't remove to CD. it's quite enough that the CD's painted surface is exposed, Make the loaded, opened plastic CD case stand like a corner for light

      1. 1. Floaters may be wiped off by blinking.
        2. A pinhole helps make visible the erythrocyte-concatenations that are floaters because it casts images from the observer's own eye to points 3. Both the object's projection and the pupil's projection are sines set against the same cosine value which is the ray jutting from the common object/pupil location into the image production destination. 4. There will not be enough room between such a situated object and a retina to make vectors manipulable enough to demonstrate observable shifts in magnification.
        5. Floaters help keep the eye moist. They also supply dissolved oxygen.
        6. Floaters are closer to the pupil than to the retina.
        7. They're finer than a hair.
      2. 9. d =n * l / sin q
        12. 680 megabytes = 1024 kilobytes * 680 * = 1024 * 1024 * 680 bytes = 1024 * 1024 * 680 * 8 bits = 5, 704, 253, 440 bits = around 5.7 ; 1 byte = 8 bits 13.The uncertainty is of an order + or - 1.30 billion bits
        14. Does the number [to be seen in lab]?
      3. Without a doubt, the units of XC are W hms, as may be shown as follows...
        XC units =
        1

        2pfC
        =
        1

        6.2832·(a/second)·C
        frequency = a # of cycles per second
        =
        1

        6.2832·(a/second)·(b (milli/micro/pico-)Farads)
        Capacitance = b # of (milli/micro/pico-)Farads
        =
        XC units =
        1·seconds

        6.2831853...·(ab) Farads
        =
        seconds·Volts

        6.2832·(ab)Coulombs
        as 1 Volt = 1 Joule per Coulomb
        =
        seconds·Joules

        6.28..·(ab) Coulomb2
        C = b # of (milli/micro/pico-)Farads
        =
      4. Inductive reactance calculations follow...
        Frequency
        f (Hz)
        (in Hertz)
        XL= 2pfL inductive
        reactance
        0 Hertz0 Whms
        1 Hertz6.3 micro-Whms10 Hz15,9151x10n Hz
        n = non-negative
        integer/whole
        number between
        zero and six
        1.59155x105-n W
        2 Hertz13 micro-W79,577 W
        (around eighty
        kilo-W Ohms
        20 Hz7,957.7
        around eight
        kilo-W Ohms
        2x10n Hz7.9577x104-n W
        3 Hertz19 micro-Wthirty
        (30) Hz
        5,305.2
        around five-point-three
        kilo-W Ohms
        3x10n Hz5.3052x104-n W
        4 Hz25 mW40 Hz3978.9 W
        about four
        kiloW
        4x10n Hz3.9789x104-n W
        5 Hz31 mWW
        6 Hz38 mW
        7 Hz44 mW
        8 Hz50 mW
        9 Hz57 mW9x10n Hz5.7x10n-5 W
      5. Around 1550 Hertz would work well for the RC ciruci9te. Around 361.7 Hertz woumight be good for the LR circuite.m Allin all, a range spanning from 500 to 200 hertz freequency would give an ample allowance for resalsts we;dwatch out for./
      6. 758.74 Hertz
      7. One Hundred (100) W hms
      8. Forty (40 mA) milliamperes
        please click to get to source of formula pic

    Lab Proper

    Analysis

    When we refer to either a capacitor or an inductor as being a "short" for a certain orientation of frequency (as the kind of thing we get Urone's Figure 22.44(b), where the capacitor shorts out high frequencies from a left-hand "black-box" circuit to ground, so as to deprive them from getting to the right-hand circuit), we would like to think of the component as, in effect, causing a short circuit (as contrasted to an open circuit) dishing off to ground a certain quality of wave-frequqency being fed into a circuit in which it has been installed.

    What a fuse is to current, a non-resistor reactance-component is to frequency, and yet inductors and capacitors are ministers of a taller order against frequency extremities when compared to the foot-soliders that are fuses, which are like bees that sting to kill audacious uprisings of current, only to themselves ending out used up.

    Consulting Tipler (Chapter 31 Section 3 page 962 Volume 2, Physics, Freeman), we find that the capacitor is indeed a short for high frequencies. The inductor shorts out both direct current and low-frequency alternating currents. This summary goes well with calculations of reactance. A capacitor becomes an open (rather than short) circuit with low frequencies that bend the reactance calculation's denominator so low that the numerator's mere value of one can end up translating into great achievements of reactance--- making the capacitor a dead end to the alternating current.

  3. Conclusion


    10 Hertz15,915
    like sixteen kiloohms
    W Ohms
    200 Hz795.77 W
    300 Hz530.52 W
    400 Hz397.89 W
    1000 HertzW Ohms
    10000 HertzW Ohms
    100000 HertzW Ohms
    10000000 HertzW Ohms
    100 HertzW Ohms
    500 HertzW Ohms
    1000 HertzW Ohms
    10000 HertzW Ohms
    100000 HertzW Ohms
    10000000 HertzW Ohms